विध्न विचारत भीरु जन, नहीं आरम्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम। पुरुष सिंह संकल्प कर, सहते विपति अनेक, 'बना' न छोड़े ध्येय को, रघुबर राखे टेक।। स्वितः मानव धर्म प्रणेता सद्ग्रः श्री रणछोड्दासजी महाराज # STUDY PACKAGE This is TYPE 1 Package please wait for Type 2 Subject : CHEMISTRY **Topic:** HYDRO CARBONS ## Indexthe support - 1. Key Concepts - 2. Exercise I - 3. Exercise II - 4. Exercise III - 5. Exercise IV - 6. Answer Key - 7. 34 Yrs. Que. from IIT-JEE - 8. 10 Yrs. Que. from AIEEE | Student's Name | ! | |----------------|----------| | Class | . | | Roll No. | ! | ADDRESS: R-1, Opp. Raiway Track, New Corner Glass Building, Zone-2, M.P. NAGAR, Bhopal 1 (0755) 32 00 000, 98930 58881, www.tekoclasses.com (2) (3) (4) (5) (7) #### **GMP** (1) R-C≡CH or R-CH=CH, Sabatier senderens reaction Zn-Cu+HCl (2) (3) (4) (5) R-XRedP-Hi, LiAlH +HOH or ROH R-Mg-Xor NH₃ or RNH₂ Na, dry ether RX Wurtz reaction R-H or Zn RX R-R Frankland's reaction FREE Download Study Package from website: (6) (8) (1) or R-C-Clor ROH C_nH_{2n+2} RedP/Hi **RCHO** R-C-R0 Zn-Hg/Conc.HCl Clemension's reduction 0 R - C = OH₂N-NH₂ Wolf / Kishner reduction R or $+H_2O$ NaOH+CaO Kolbe's electrolytic synthesis (RCH₂CH₂)₃B **RCOONa** **RCOONa** (9) (10) GR Page 2 of 40 HYDROCARBONS (1) $$X_2$$, hv or UV light or 400 °C RX $$SO_2 + Cl_2 \xrightarrow{\text{Reed reaction}} RSO_2Cl$$ $$\xrightarrow{\text{Pyrolysis}} \text{Alkenes} + \text{CH}_4 \text{ or } \text{C}_2\text{H}$$ $$\begin{array}{c} \begin{array}{c} \text{Nitration} \\ \text{SUlphonation } \text{H}_2\text{S}_2\text{O}_7 \\ \\ \text{SO}_2 + \text{Cl}_2 \\ \hline \\ \text{Reed reaction} \\ \text{hv} \end{array} \\ \begin{array}{c} \text{RSO}_2\text{Cl} \\ \text{hv} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \text{Reed reaction} \\ \text{hv} \\ \end{array} \\ \begin{array}{c} \text{RSO}_2\text{Cl} \\ \text{hv} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \text{AlCl}_3/\text{HCl} \\ \text{Isomerisation} \\ \end{array} \\ \begin{array}{c} \text{Drank or Voxide} \\ \text{+Al}_2\text{O}_3 \text{S00}^{\circ}\text{C} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \text{Cr or Mo or Voxide} \\ \text{+Al}_2\text{O}_3 \text{S00}^{\circ}\text{C} \\ \end{array} \\ \begin{array}{c} \text{Aromatic compound} \\ \text{Alkenes} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \text{CH}_2\text{N}_2 \\ \text{step up reaction} \\ \end{array} \\ \begin{array}{c} \text{Higher alkane} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \text{Nitration} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{RSO}_2\text{Cl} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{RSO}_2\text{Cl} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{Nitration} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{Nitration} \\ \text{Nitration} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{Nitration} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{Nitration} \\ \text{Nitration} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{Nitration} \\ \text{Nitration} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{RSO}_2\text{Cl} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{Nitration} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{Nitration} \\ \text{Nitration} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{Nitration} \\ \text{Nitration} \\ \text{Nitration} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \text{Nitration} \\ \end{array} \\ \begin{array}{c} \text{Nitrati$$ (8) $$\xrightarrow{\text{CH}_2\text{N}_2}$$ Higher alkano $$(9) \qquad \frac{|O_2|}{\Delta} \longrightarrow CO_2 + H_2C$$ Combustion or C_nH_{2n} #### **GMP** (1) R-CH₂-CH₂-OH - alc.KOH (2) R-CH₂-CH₂-X -HX - Zn dust (3) $R-CH_2-CH < x$ for higher alken - $\begin{array}{c|c} R-CH-CH_2 \\ & \mid & \mid \\ X & X \end{array}$ Zn dust - (5) R–C≡CH - (6) RCH COOK Kolbe's electrolytic synthesis Ni, H_2 yrolysis CuR - $(7) (C_2H_5)_4N^+OH$ - Pyrolysis - (9) R-H FREE Download Study Package from website: www.tekoclasses.com (10) CH₂=CHCl #### GR - (1) $\xrightarrow{\text{H}_{2}, \text{Ni}}$ R-CH₂-CH₃ - (2) $\xrightarrow{X_2}$ R-CHX-CH₂X - $R-CH=CH_3$ (3) \xrightarrow{HX} $R-CHX-CH_3$ - $(4) \xrightarrow{\text{HBr, Peroxide}} \text{R-CH}_2\text{-CH}_2\text{Br}$ - $(5) \xrightarrow{HOC1} R-CH(OH)-CH_2CI$ - $(6) \xrightarrow{\quad \text{dil.H}_2 \text{SO}_4 \quad } \text{R-CH}_2 \text{(OH)-CH}_3$ - (7) $\xrightarrow{1/2O_2}$ R-CH-CH₂ O (8) $\xrightarrow{+CH_2N_2}$ R-CH-CH₂ CH₂ - $(9) \xrightarrow{BH_3} (RCH_2CH_2)_3B$ $$(10) \xrightarrow[\text{HCo(CO)}_4]{\text{CO+H}_2} \xrightarrow[\text{CHO}]{\text{R-CH-CH}_3} \xrightarrow[\text{R-CH}_2]{\text{R-CH}_2} \xrightarrow[\text{CHO}]{\text{CHO}}$$ - $O_2 \rightarrow CO_2 + H_2O$ - $R-CH-CH_2$ OH OH $$(14) \xrightarrow{\text{strong oxidant}} \begin{array}{c} R - C - OH \\ \parallel \\ O \end{array} + CO_2 + H_2O$$ $$(15) \xrightarrow[\text{Priles-chalev's reaction}]{\text{Per acid}} R\text{-CH-CH}_2$$ (16) $$\xrightarrow{O_3 + H_2O}$$ $\xrightarrow{O_2 + H_2O}$ $\xrightarrow{O_2}$ Polyalkene $\xrightarrow{O_3 + H_2O}$ Polyalkene - (18) $\xrightarrow{\text{Cl}_2}$ Substitution product - $(19) \xrightarrow{\text{Al}_2(\text{SO}_4)_3} \text{Isomerisation}$ - (20) $\xrightarrow{\text{acetic anhydride}} \text{R-CH}_2 = \text{CH-COCH}_3$ Methyl alkenyl ketone - (21) Alkane Higher alkane (A) $$CH=CH_2$$ (B) CH (D) All of these Q.2 1-Methylcyclopentene can be converted into the given compound $$CH_3$$ by the use of which of the following reagents? - (A) BD₃ followed by HCOOH - (B) BH₃ followed HCOOD - (C) BD₃ followed by HCOOD - (D) BH₃ followed by D-C-O-H - Identify (P) in the following reaction: $$Ph \longrightarrow +2 \xrightarrow{H} \xrightarrow{H^{\oplus}/H_2O} (P)$$ $$(C)$$ Ph O O $$(D) \bigvee_{O \bigcirc O} O$$ The reaction of E-2-butene with CH₂I₂ and Zn-Cu Couple in either medium leads to formation of - (E)-3-bromo-3-hexene when treated with CH₂O^r in CH₂OH gives - (A) 3-hexyne - (B) 2-hexyne - (C) 2,3-hexadiene - (D) 2,4-hexadiene - The reaction of cyclooctyne with HgSO₄ in the presence of aq. H₂SO₄ gives \xrightarrow{hv} mixture of product. Among the following which product will formed minimum Q.7 amount. Page 5 of 40 HYDROCARBONS Q.8 $$\xrightarrow{\text{CH}_2\text{OH}} \xrightarrow{\text{H}_2\text{SO}_4} P \text{ (Major)} \xrightarrow{\text{NBS}} Q \text{ (Major)}$$ The structure of Q is Q.9 $$\xrightarrow{\text{CH}_3}$$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{(i)CH}_3\text{COOOH}}$ $\xrightarrow{\text{(ii)H}_3\text{O}^{\oplus}}$ X The probable structure of 'X' is $$(A) \overset{CH_3}{\underset{CH_3}{H}} \overset{CH_3}{\underset{OH}{OH}} \qquad (B) \overset{CH_3}{\underset{HO}{\underset{HO}{H}}} \qquad (C) \overset{CH_3}{\underset{H}{\underset{OH}{\underset{OH}{H}}}} \qquad (D) \overset{CH_3}{\underset{H}{\underset{OH}{\underset{CH_3}{H}}}}$$ Alkene (P) & (Q) respectively are (A) Both $$H_3C$$ $C = C P_h$ $$(B) \underset{H_3C}{\overset{Ph}{\smile}} C = (CH_3, CH_3) \underset{Ph}{\overset{CH_3}{\smile}} C = (CH_3, CH_3)$$ (D) Both $$P_h$$ $C = C_{P_h}$ - (A) Only CH₃CHO - (C) Only CO₂ - (B) Only HCHO - (D) Mixture of CH₃CHO, HCHO & CO₂ - FREE Download Study Package from website: www.tekoclasses.com O-xylene on ozonolysis will give Q.12 $$\begin{array}{cccc} \operatorname{CH}_3 - \operatorname{C} = \operatorname{O} & \operatorname{CHO} \\ | & & & | \\ \operatorname{CH}_3 - \operatorname{C} = \operatorname{O} & \operatorname{CHO} \end{array}$$ (B) $$CH_3 - C = O$$ $CH_3 - C = O$ & $CH_3 - C - CHO$ $$\begin{array}{c} \text{CH}_3 - \text{C} = \text{O} & \text{O} \\ \text{(D)} & \text{I} & \text{CH}_3 - \text{C} - \text{CHO} & \text{CHO} \\ \text{CH}_3 - \text{C} = \text{O} & \text{CHO} \end{array}$$ COOCH₃ Q.13 OOCH₃ H₂O/Acetone Identify 'X'. $$(C) \underset{HO}{\overset{COOCH_3}{\longleftarrow}}$$ (D) Reaction will not occur FREE Download Study Package from website: www.tekoclasses.com Identify Z. Q.15 $$(A) \xrightarrow{O} OC_2H$$ $$(B) \bigcirc OC_2H_5$$ (C) $$OC_2H_5$$ (D) All are correct CH₃ CH₃ $CH = CH_2$ A; Identify A (Acetone/water) $$\begin{array}{cccc} \operatorname{CH_3} & \operatorname{CH_3} & \operatorname{OH} & \operatorname{OH} \\ \operatorname{(A)} & \operatorname{CH_3} - \operatorname{C} = \operatorname{C-CH_2} - \operatorname{CH-CH_2} \end{array}$$ $$\begin{array}{ccc} CH_3 & CH_3 \\ & | & | & | \\ CH_3 - C - C - CH_2 - CH = CH_2 \\ & | & | & | \\ CH & OH & OH \end{array}$$ $$\begin{array}{cccc} \operatorname{CH}_3 & \operatorname{CH}_3 \\ | & | & | \\ \operatorname{CC}) & \operatorname{CH}_3 - \operatorname{CH} - \operatorname{C} - \operatorname{CH}_2 - \operatorname{CH} - \operatorname{CH}_3 \\ | & | & | \\ \operatorname{OH} & \operatorname{OH} \\ \end{array}$$ (D) Reaction will not occur 1-Penten-4-yne reacts with bromine at – 80°C to produce: Q.16 - (A) 4,4,5,5-Tetrabromopentene - (B) 1,2-Dibromo-1,4-pentadiene - (C) 1,1,2,2,4,5-hexabromopentane - (D) 4,5-dibromopentyne compound A will have structure. - (A) $CH_3CH_2 C = C CH_2CH_3$ CH₃ CH₃ - (B) $CH_3 CH CH = C CH_2CH_2CH_3$ CH₃ CH₃ Page 8 of 40 HYDROCARBONS TEKO CLASSES, Director: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 0 98930 58881, BHOPAL - (C) $CH_3CH-C \equiv C-CH_3$ CH₃ - (D) $CH_3 CH C \equiv C CH CH_3$ CH₃ CH₃ Consider the following reaction - $\xrightarrow{\text{KMnO}_4/\text{OH}^-/\Delta}$ $C_5H_{10}O$ $(A) C_6 H_{12} -$ In the above reaction (A) will be - (A) CH₂-CH₂-CH₂-CH₂-CH=CH₂ - (B) $CH_3 CH CH_2 CH = CH_2$ CH₃ - (C) CH₃ CH₂ CH CH = CH₂ CH₃ - (D) $CH_3CH_2CH_2 C = CH_2$ alcoholic KOH product Major product is: Number of required O_2 mole for complete combustion of one mole of propane – - (B)5 - (C) 16 - (D) 10 How much volume of air will be needed for complete combustion of 10 lit. of ethane – - (A) 135 lit. - (B) 35 lit. - (C) 175 lit. - (D) 205 lit. When n-butane is heated in the presence of
AlCl₃/HCl it will be converted into – - (A) Ethane - (B) Propane - (C) Butene - (D) Isobutane The reacting species of alc. KOH is -Q.23 - $(A) OH^{-}$ - $(B) OR^+$ - $(C) OK^+$ - (D) RO- Q.24 The product of reaction between one mole of acetylene and two mole of HCHO in the presence of Cu₂Cl₂ - - (A) $HOCH_2 C \equiv C CH_2OH$ - (B) $H_2C = CH C \equiv C CH_2OH$ (C) $HC \equiv C - CH_2OH$ (D) None of these | | Q.25 | PMA polymer is formed by methyl acrylate, which is prepared as follows – | | | | | | | | | | | |---------------------------|--------------|---|--|--------------------------------|--|--|--|--|--|--|--|--| | | | $(A) R - C \equiv CH \xrightarrow{CO + ROH}$ | (B) HC \equiv CH $\xrightarrow{\text{CO+CH}_3\text{OH}}$ $\xrightarrow{\text{Ni(CO)}_4}$ | HYDROCARBONS | | | | | | | | | | | | (C) HC \equiv CH $\frac{\text{CO} + \text{H}_2\text{O}}{\text{Ni} (\text{CO})_4} \rightarrow$ | (D) None of these | HYDRC | | | | | | | | | | | Q.26 | During the preparation of ethane by Kolbe's electrolytic method using inert electrodes the pH of the electrolyte – | | | | | | | | | | | | | | (A) Increases progressively as the reaction proceeds(B) Decreases progressively as the reaction proceeds | | | | | | | | | | | | | | (C) Remains constant throughout the reaction | | | | | | | | | | | | | | (D) May decrease of the the concentration of the electrolyte is not very high | | | | | | | | | | | | | Q.27 | Ethylene forms ethylene chlorohydrin by the ac | | . BHOPAL | | | | | | | | | | com | | (A) Dry HCl gas(C) Solution of chlorine gas in water | (B) Dry chlorine gas(D) Dilute hydrochloric acid | | | | | | | | | | | ses. | 0.20 | | | 881 | | | | | | | | | | clas | Q.28 | Anti–Markownikoff's addition of HBr is not of (A) Propene (B) But–2–ene | (C) Butene (D) Pent–2–ene | 30 58 | | | | | | | | | | www.tekoclasses.com | Q.29 | Which alkene on heating with alkaline KMnO. | solution gives acetone and a gas, which turns lime water | 0 98930 58881 | | | | | | | | | | WW. | Q.2> | milky – | | | | | | | | | | | | | | (A) 2–Methyl–2–butene
(C) 1–Butene | (B) Isobutylene
(D) 2–Butene | 000 | | | | | | | | | | site | Q.30 | Acetylene may be prepared using Kolbe's electrolytic method employing – | | | | | | | | | | | | web | Q.30 | (A) Pot. acetate (B) Pot. succinate | (C) Pot. fumarate (D) None of these | 55)- (3 | | | | | | | | | | Package from website: | 0.01 | | | K. Sir) PH: (0755)- 32 00 000 | | | | | | | | | | ge fi | Q.31 | • \leftarrow Lindlar R-C \equiv C-R $\xrightarrow{\text{Na/NH}_3}$ A A and B are geometrical isomers (R-CH=CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C | P) | PH | | | | | | | | | | cka | | (A) A is trans, B is cis | (B) A and B both are cis | Sir. | | | | | | | | | | y Pa | | (C) A and B both are trans | (D) A is cis, B is trans | ς.
χ | | | | | | | | | | | Q.32 | Which is expected to react most readily with b | romine – | A (S. | | | | | | | | | | ad S | | (A) CH3CH2CH3 (B) CH2=CH2 | (C) $CH = CH$ (D) $CH_3 - CH = CH_2$ | ARIX | | | | | | | | | | vnlo | Q.33 | By the addition of CO and H ₂ O on ethene, the following is obtained – | | | | | | | | | | | | Do | Q.34 | (A) Propanoic acid (B) Propanal (C) 2—Propenoic acid (D) None of the ab | | | | | | | | | | | | FREE Download Stud | Q.5 i | 7 12 7 | | | | | | | | | | | | FΕ | | CH ₃ – CHCOOH of + CH ₃ CH ₂ COOH. The alkyne is – | | | | | | | | | | | | | | CH_3 | (B) 2–Methyl–3–hexyne | . Director: SUHAG R. KARIYA (S | | | | | | | | | | | | (A) 3–Hexyne
(C) 2–Methyl–2–hexyne | | CLASSES. | | | | | | | | | | | Q.35 | A compound (C ₅ H ₈) reacts with ammonical AgNO ₃ to give a white precipitate and reacts with excess of | | | | | | | | | | | | | 4 .55 | KMnO ₄ solution to give (CH ₃) ₂ CH–COOH. The compound is – | | | | | | | | | | | | | | (A) $CH_2=CH-CH=CH-CH_3$
(C) $CH_2(CH_2)_2C\equiv CH$ | (B) $(CH_3)_2CH-C \equiv CH$
(D) $(CH_3)_2C=C=CH_2$ | TEKO | | | | | | | | | (C) $$Cu_2^{2+}$$ Q.36 Which of the following reagents cannot be used to locate the position of triple bond in $$CH_3$$ – C = C – CH_3 (A) Br_2 (B) O_3 (C) Cu_2^{2+} (D) $KMnO_4$ Q.37 CH_3 – CH_2 – C = CH \xrightarrow{A} CH_3 C= C - CH_3 A and B are – (A) alcoholic KOH and NaNH₂ (B) NaNH₂ and alcoholic KOH (C) NaNH₂ and Lindlar (D) Lindlar and NaNH₂ Q.38 B $$\leftarrow \frac{BH_3/THF}{H_2O_2/OH^-}$$ \longrightarrow $=CH_2 \xrightarrow{H_3O^+} A$ A and B are – (A) Both $$\bigcirc$$ -CH₂OH $$(C)$$ \longrightarrow CH_2OH , \bigcirc CH_3 (D) $$\sim$$ CH₃, \sim -CH₂OH A and B are - $$Q.40$$ CH₃CH=CH₂ $\xrightarrow{B_2D_6}$ product X X is - $$\begin{array}{c} \text{(A) CH}_3 - \text{CH} - \text{CH}_2 \text{D} \\ \text{OH} \end{array}$$ (B) $$CH_3 - CH - CH_2OH$$ $$\begin{array}{c} \text{(C) CH}_3 - \text{CH} - \text{CH}_3 \\ \text{OD} \end{array}$$ CH_2 =CH-CH= CH_2 $\xrightarrow{CCl_3Br}$ product. The major product is – (A) $$\operatorname{Br-CH}_2\operatorname{-CH=CH-CH}_2\operatorname{-CCl}_3$$ (B) $$CH_2 = CH - CH - CH_2 - CCl_3$$ Br (C) $$CH_2 = CH - CH - CH_2 - Br$$ $$CCl_3$$ (D) None is correct - Mixture of one mole each of ethene and propyne on reaction with Na will form H₂ gas at S.T.P. (A) 22.4 L(B) 11.2 L (C) 33.6 L(D) 44.8 L - Dehydration of 2, 2, 3, 4, 4-pentamethyl-3-pentanol gave two alkenes A and B. The ozonolysis products Q.43 of A and B are - - O A gives $(CH_3)_3C-\ddot{C}-C(CH_3)_3$ and HCHO (A) B gives $CH_3 - C - CH_2 - C(CH_3)_3$ and HCHO O A gives $(CH_3)_3C-C-C(CH_3)_3$ and HCHO (B) > O CH₃ B gives $CH_3 - C - C - C(CH_3)_3$ and HCHO CH₃ A gives $(CH_3)_3C - \ddot{C} - CH(CH_3)_2$ and HCHO B gives $(CH_3)-CH_2-C-C(CH_3)_3$ and CH_3CH_2CHO None of these (D) FREE Download Study Package from website: www.tekoclasses.com Product is - - (A) Cu-C≡C-Cu - (B) $CH_2=CH-C\equiv CH$ (C) $CH\equiv C-Cu$ - (D) $Cu-C \equiv C-NH_{\Delta}$ Alkene A $$\xrightarrow{O_3/H_2O}$$ $CH_3 - C - CH_3 + CH_3COOH + CH_3 - C - COOH$ \parallel O A can be - $$C(CH_3)_2$$ || (B) $CH_3 - C - CH = HC - CH_3$ (C) Both correct (D) None is correct Q.48 R_1 and R_2 are – - (A) Cold alkaline KMnO₄, OsO₄/H₂O₂ - (B) Cold alkaline KMnO₄, HCO₃H - (C) Cold alkaline KMnO₄, CH₃–O–O–CH₃ (D) C₆H₅CO₃H, HCO₃H Q.47 $$H - C$$ $$CH_3$$ $$A, which is true about this reaction?$$ - (A) A is meso 2, 3-butan-di-ol formed by syn addition - (B) A is meso 2, 3-butan-di-ol formed by anti addition - (C) A is a racemic mixture of d and l, 2, 3-butan-di-ol formed by anti addition - (D) A is a racemic mixture of d and l 2,3-butan-di-ol formed by syn addition $$A$$ B C CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_6 CH_7 CH $$(C) \begin{array}{c} \text{HO} \quad \text{CH}_3 \\ \text{CH}_3 \\ \text{CHO} \\ \text{CHO} \end{array}$$ $$(D) \begin{array}{c} HO \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ COOH \\ \hline \end{array}$$ A can be - - (A) Conc. H₂SO₄ - (B) alcoholic KOH - (C) Et₃N - (D) t-BuOK - (A) BrCH₂-CH=CH₂ (B) CH₂=C=CH₂ - (D) All of these Q.51 Which has least heat of hydrogenation – (2) NaBH₄/NaOH/H₂O $$(A)$$ CH_3 OH FREE Download Study Package from website: www.tekoclasses.com Q.53 An organic compound of molecular formula C₄H₆, (A), forms precipitates with ammoniacal silver nitrate and ammoniacal cuprous chloride. 'A' has an isomer 'B', one mol of which reacts with one mol of Br2 to form 1, 4-dibromo-2-butene. Another isomer of A is 'C', one mole of C reacts with only 1 mol. of Br₂ to give vicinal dibromide. A, B & C are - (A) CH_3 - CH_2 - $C\equiv CH$ and CH_2 =CH-CH= CH_2 ; - (B) CH₃-C=C-CH₃ and CH₃-CH=C=CH₂; CH₃-C=C-CH₃ (D) $$CH_3$$ – $C\equiv C$ – CH_3 and CH_2 CH_2 CH_2 ; $CH_2 = CH$ – $CH = CH_2$ \xrightarrow{x} product is Y (non-resolvable) then X can be – Q.54 (A) Br, water (B) HCO₃H (C) Cold alkaline KMnO₄ (D) all of
the above Q.55 Electrophilic addition reaction is not shown by - (A) $CH_2 = C CH_3$ and Br_2 CH₃ - (B) CH≡CH₂ and HO–Cl - (C) CH₃–C≡CH and CH₃MgBr - (D) $CH_2=CH_2$ and dil. H_2SO_4 solution A mixture of CH₄, C₂H₄ and C₂H₂ gaseous are passed through a Wolf bottle containing ammonical Q.56 cuprous chloride. The gas coming out is (A) Methane - (B) Acetylene - (C) Mixture of methane and ethylene - (D) original mixture In the presence of strong bases, triple bonds will migrate within carbon skeletons by the Q.57 (A) removal of protons - (B) addition of protons - (C) removal and readdition of protons - (D) addition and removal of protons. Q.58 $$CH_2$$ = CH - CH = CH_2 + $\underset{CHCOOH}{||}$ $\xrightarrow{\Delta}$ product X by reaction R. X and R are - Q.59 For the ionic reaction of hydrochloric acid with the following alkenes, predict the correct sequence of reactivity as measured by reaction rates: - (I) CICH=CH₂ - $(II) (CH_3)_2.C=CH_2$ - (III) OHC.CH=CH₂ - $(IV) (NC)_2 C = C(CN)_2$ - (A) IV > I > III > II - (B) I > IV > II > III - (C) III > II > IV > I - (D) II > I > III > IV - Q.60 The addition of bromine to 2-cyclohexenyl benzoate in 1,2-dichloroethane produces _____ dibromo derivatives: - (A) 2 - (B)3 - (C)4 - (D)6 - Q.61 How many products will be formed when methylenecyclohexane reacts with NBS? - (A) 3 - (B) 1 - (C) 2 - (D)4 Q.62 $$\xrightarrow{\text{CH}_3-\text{C-NH}_2}$$ $\xrightarrow{\text{CH}_3-\text{C-NH}_2}$ $\xrightarrow{\text{CY}}$ The structures of (X) and (Y) respectively are (A) $$X = \langle \rangle$$ MgBr $$(B) X = \begin{cases} -Br \\ Mg - \end{cases}$$ (C) $$X = \langle -MgBr \rangle$$ $$Y = \langle \rangle$$ (D) $$X = BrMg - \langle MgBr \rangle$$ $$Y = HO - \langle \rangle - OH$$ Q.1 $$A \xrightarrow{\text{HgSO}_4/\text{H}_2\text{SO}_4} B\text{H}_3/\text{THF} \rightarrow B\text{H}_2\text{O}_2/\text{OH}^-$$ B is identical when A is - $$(A) H \longrightarrow H$$ $$(B) \longrightarrow H$$ - Q.2 An alkene on ozonolysis yields only ethanal. There is an isomer of this which on ozonolysis yields: - (A) propanone - (C) methanal - (B) ethanal - (D) only propanal - $CH_3 CH = CH CH_3 + CH_2N_2 \xrightarrow{\Delta} A$ Q.3 A can be - Aqueous solution of potassium propanoate is electrolysed. Possible organic products are: (B) $C_2H_5COOC_2H_5$ (C) CH_3-CH_3 - (A) n-Butane - (D) $CH_2 = CH_2$ R_1 and R_2 are: - (A) cold alkaline KMnO₄, OsO₄ / H₂O₂ - (B) OsO₄ / NaHSO₃ ; Ag₂O , H₃O[⊕] - (C) cold alkaline KMnO₄, C₆H₅CO₃H / H₃O[®] (D) C₆H₅CO₃H ; OsO₄ / NaHSO₃ - (A) $C_4H_6 \xrightarrow{H_2/Pt}$ (B) $C_4H_8 \xrightarrow{O_3/H_2O}$ CH_3COOH Hence A and B are - (A) $CH_3C \equiv CCH_3$, $CH_3CH = CHCH_3$ - (B) $CH_2 = CHCH_3 = CH_2$, $CH_3CH = CHCH_3$ - \parallel , CH₃CH = CHCH₃ - (D) None - Q.7 Which is / are true statements/ reactions? - $\begin{aligned} &(\mathsf{A})\,\mathsf{Al}_4\mathsf{C}_3 + \mathsf{H}_2\mathsf{O} \longrightarrow \mathsf{CH}_4 \\ &(\mathsf{C})\,\mathsf{Mg}_2\mathsf{C}_3 + \mathsf{H}_2\mathsf{O} \longrightarrow \mathsf{CH}_3\mathsf{C} \equiv &\mathsf{CH} \end{aligned}$ - (B) $CaC_2 + H_2O \longrightarrow C_2H_2$ (D) $Me_3C-H + KMnO_4 \longrightarrow Me_3C-OH$ - $\operatorname{Ph}-\operatorname{C}-\operatorname{CH}_3 \xrightarrow{\quad \text{A} \quad} \operatorname{Ph}-\operatorname{CH}_2-\operatorname{CH}_3$ Q.8 A could be: (A) NH₂NH₂, glycol/OH⁻ (B) Na(Hg)/conc. HCl (C) Red P/HI (D) $CH_2 - CH_2$; Raney Ni – H_2 SH SH Q.9 $$CH_3 \xrightarrow{t-BuOK} Product$$ which is / are correct statements about the product: (A) $$\langle CH_3 \rangle$$ is an endocyclic Saytzeff product (B) $$\langle EH_2 \rangle$$ is an exocyclic Saytzeff product (C) $$\leftarrow$$ \rightarrow $=$ CH₂ is an exocyclic Hoffmann product (D) $$\sim$$ CH₃ is an endocyclic Hoffmann product Q.10 $$CH_2 = CHCH_2CH = CH_2 \xrightarrow{NBS} A$$, A can be (A) $$CH_2 = CHCHCH = CH_2$$ $${}_{(}B_{)}\,CH_{2}\text{=}CHCH\text{=}CH\text{-}CH_{2}Br$$ $$(C)$$ $CH_2 = CH CH_2 CH = CHBr$ (D) $$CH_2 = CHCH_2C = CH_2$$ $$Br$$ - Q.11 Which are correct statements? - (A) meso-2, 3-dibromo-butane on reaction with NaI / acetone gives trans-2-butene - (B) d-or l-2, 3-dibromobutane on reaction with NaI/acetone gives cis-2-butene - (C) meso-2, 3-dibromo-butane on reaction with NaI / acetone gives cis-2-butene - (D) d-or l-2, 3-dibromobutane on reaction with NaI/acetone gives trans-2-butene $$Q.12$$ Ph-CH=CH₂ + BrCCl₃ $\xrightarrow{peroxide}$ Product is: (A) Ph $$\longrightarrow$$ CH₂CCl₃ (B) Ph $$CH_2Br$$ (C) Ph $$-$$ H $-$ CH₂CCl₃ (D) Ph $$CCl_3$$ CH_2Br H - Which of the following elimination reactions will occur to give but-1-ene as the major product? - CH₃.CHCl.CH₂.CH₃ + KOH -(A) - $CH_3.CH_2.CH.CH_3 + NaOEt \xrightarrow{EtOH} \Delta$ (B) - $CH_3.CH_2.CHCl.CH_3 + Me_3CoK \xrightarrow{\Delta}$ (C) - $CH_3.CH_2.CH(OH).CH_3 + conc. H_2SO_4 \longrightarrow$ (D) The above compound undergoes ready elimination on heating to yield which of the following products? - Which of the following will give same product with HBr in presence or absence of peroxide. - (A) Cyclohexene - (B) 1-methylcyclohexene - (C) 1,2-dimethylcyclohexene - (D) 1-butene - FREE Download Study Package from website: www.tekoclasses.com Q.16 The ionic addition of HCl to which of the following compounds will produces a compound having Cl on carbon next to terminal. - (A) CF₃ (CH₂)₃ CH=CH₂ (B) CH₂.CH=CH₂ (C) CF₃.CH=CH₂ (D) CH₃.CH₂CH=CH.CH - O.17 Select true statement(s): - (A) I_2 does not react with ethane at room temperature even though I_2 is more easily cleaved homolytically than the other halogens. - (B) Stereochemical outcome of a radical substitution and a radical addition reaction is identical. - (C) The rate of bromination of methane is decreased if HBr is added to the reaction mixture. - (D) Allylic chloride adds halogens faster than the corresponding vinylic chloride. - Q.18 Select true statement(s): - (A) Instead of radical substitution, cyclopropane undergoes electrophilic addition reactions in sun light. - (B) In general, bromination is more selective than chlorination. - (C) The 2,4,6-tri-tert, butylphenoxy radical is resistant to dimerization. - (D) The radical-catalysed chlorination, $ArCH_3 \rightarrow ArCH_3CI$, occurs faster when Ar = phenyl than whenAr = p-nitrophenyl. - Nitrene is an intermediate in one of the following reactions: 0.19 - (A) Schmidt rearrangement - (B) Beckmann rearrangement - (C) Baever-Villiger oxidation - (D) Curtius reaction - Which reagent is the most useful for distinguishing compound I from the rest of the compounds Q.20 $$CH_3CH_2C\equiv CH$$ $$\mathrm{CH_{3}CH}\text{=}\mathrm{CH}_{2}$$ (A) alk. KMnO₄ $$\text{(A) CH}_2\text{=CH-CH}_3 \xrightarrow{\quad +\text{SO}_2\text{Cl}_2\quad } \text{CH}_2\text{Cl-CHCl-CH}_3$$ $$(B) \ HC \equiv CH + CH_2N_2 \longrightarrow HC \xrightarrow[N]{HC} N$$ $(C) (CH_3)_3 CH + Cl_2 \xrightarrow{photo-} (CH_3)_3 C-Cl$ as major product $$\text{(D) CH}_3\text{-C=C-CH}_2\text{-CH}_2\text{-CH}_3\xrightarrow[\text{in NH}_3(\text{liq})]{\text{Had}}\overset{\text{H}}{\underset{\text{CH}_3}{\longleftarrow}}\text{C=C}\overset{\text{H}}{\underset{\text{CH}_2}{\longleftarrow}}\text{CH}_2\text{--CH}_3$$ List I List II (A) n-Hexane $$\xrightarrow{\operatorname{Cr_2O_3-Al_2O_3,\Delta}}$$ (1) Substitution reaction (B) $CH \equiv CH \xrightarrow{\text{Red hot Fe tube}}$ (2) Elimination reaction (C) $$CH_3 - C - X \longrightarrow aq$$. $$CH_3 \longrightarrow CH_3$$ (3) Aromatisation (D) CH_3 - CH_2 -X \longrightarrow alc. KOH (4) Cyclization FREE Download Study Package from website: www.tekoclasses.com List I (A) $$CH_3 - C = CH_2 \xrightarrow{\text{(i) BH}_3} \xrightarrow{\text{(ii) H}_2O_2/OH}$$ (B) $$CH_3 - C = CH_2 \xrightarrow{\text{(i)} Hg(OAc)_2/HOH} \xrightarrow{\text{(ii)} NaBH_4}$$ $$(2)\,\mathrm{CH}_3\mathrm{-CH=CH-CH}_3$$ (C) $$CH_3 - CH_2 - CH - CH_3 \xrightarrow{CH_3ONa/\Delta}$$ (3) $CH_3 - CH - CH_2OH$ (D) $$CH_3 - CH_2 - CH - CH_3 \xrightarrow{(CH_3)_3 CON_a}$$ (4) $CH_3 - C - CH_3$ (d) **Codes:** TEKO CLASSES, Director: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 0 98930 58881, BHOPAL Q.26 - (A) Walden Inversion - (B) Racemic mixture - Baeyer (C) Alkene -Reagent - $\xrightarrow{\text{Br}_2}$ (D) Alkene - **Codes:** - A В \mathbf{C} D 3 4 2 1 (a) (b) 3 4 1 2 - 2 3 (c) 4 1 - 3 2 1 (d) 4 - (4) SN₂ reaction (3) SN₁ reaction Q.25 List I - (A) CH_3 – $C\equiv C$ – CH_3 \longrightarrow cis-2-butene - (B) $CH_3 C \equiv C CH_3 \longrightarrow trans-2$ -butene - (C) $CH_3C \equiv C CH_3 \longrightarrow 1$ -Butyne - (D) CH_3 - CH_3 - $C\equiv CH \longrightarrow 2$ -Butyne **Codes:** - В \mathbf{C} D (a) 3 (b) 2 4 3 (c) - (d) List I - (A) RCOONa - (B) R-CH₂-COOH R-CH₃ - (C) RCOOH $(ii)Cl_2/\Delta$ - (D) $R'-X + R_2CuLi$ \rightarrow R–R' **Codes:** C A В D 2 3 4 1 (a) (b) 1 3 4 2 2 2 4 3 (c) 3 2 (d) 4 List II List II - (1) N #/N H 3(l) - (2) H₂/Pd/BaSO₄ - (3) alc. KOH, Δ - (4) NaNH $_2$, Δ - List II - (1) Corey-Housh reaction - (2) Kolbe electrolysis - (3) Oakwood degradration - (4) Hunsdiecker reaction TEKO CLASSES, Director: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 0 98930 58881, BHOPAL Q.28 (A) $$C$$ CH_3 CH_2 - CH_3 CH_2 - CH_3 (1) Birch reduction (C) $$\parallel$$ \longrightarrow \parallel (3) Wolf-Kishner reduction $$(D) \longrightarrow \bigcirc$$ #### (4) Clemmensen reduction - → Benzene (A) n-Hexane - (B) CH≡CH-→ Benzene #### List II - (1) Wurtz reaction - (2) Coupling of reactants is taking place (C) $$CH_{\overline{3}}(CH_2)_{\overline{6}}CH_3 \longrightarrow 2,2,3,3$$ tetramethyl butane(3) $AlCl_3 + HCl$ at 300°C (D) CH_3 - CH_2 - $X \longrightarrow n$ -Butane - (4) Polymerisation - (5) Aromatic procducts is formed - (6) $Zn + \Delta$ used as reagent - $(7) Al_2O_3$ at high temperature - Q.29 Match List-I with List-II and select the correct answer using the codes given below the lists: #### List-I (Reaction) - CH₃-CH=CH₂→CH₃-CHBr-CH₃ (A) - CH_3 -CH= CH_2 - CH_3 - CH_2 - CH_2 Br
(B) - (C) - $\begin{array}{l} \text{CH}_3\text{-CH=CH}_2 \rightarrow \text{BrCH}_2\text{-CH=CH}_2 \\ \text{CH}_3\text{-CH=CH}_2 \rightarrow \text{CH}_3\text{-CHBr-CH}_2 \text{Br} \end{array}$ (D) #### **List-II** (Reagents) - (P) HBr - (Q) Br₂ - HBr/Peroxide (R) - **NBS (S)** Q.1 Give the product of (a) $$\xrightarrow{BH_3}$$ A $\xrightarrow{H_2O_2}$ B (b) (b) $$C=C$$ H $C=C$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $$\begin{array}{ccc} \text{CH}_3 & & \\ \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \\ \text{C} & \text{C} & \text{C} & \text{C} & \\ \text{C} & \text{C} & \text{C} & \\ \text{C} & \text{C} & \text{C} & \\ \end{array} \end{array}$$ What are the ozonolysis products of Q.3 $$\begin{array}{c|c} H & D \\ H & D \\ D & H \end{array}$$ NaOH Alc. Al. Write the structure of **A**. $$\begin{array}{c} O \\ CH \\ CH \\ NO_2-CH_2 \end{array}$$ C=C $$\begin{array}{c} O \\ CH \\ CH \\ CH_2-NO_2 \end{array}$$ $$\begin{array}{c} NH_2-NH_2/H_2O_2 \\ OH_2-NH_2/H_2O_2 \end{array}$$ A. Write the structure of A Give the structure of the alkene that yields on ozonolysis Q.8 - (i) CH₃CH₂CH₂CH₂CHO & HCHO - (ii) C₂H₅COCH₃ & CH₃CH(CH₃) CHO (iii) Only CH₃CO.CH₃ Q.6 - (iv) CH_3 .CHO & HCHO & OHC.CH $_2$.CHO - (v) Only OHC-CH₂CH₂CH₂-CHO. One of the constituent of turpentine is α -pinene having molecular formula $C_{10}H_{16}$. The following scheme give reaction of α -pinene. Determine the structure of α -pinene & of the reaction products A through E. Identify the following (A to D). optically active $$Me > C = O + CH_3CO_2H$$ optically active $Me > C = O + CH_3CO_2H$ $C_{11}H_{20} \leftarrow C_{11}H_{18} \leftarrow C_{11}H_{18}$ $C_{11}H_{20} \leftarrow C_{11}H_{18} \leftarrow C_{11}H_{18}$ $C_{11}H_{20} \leftarrow C_{11}H_{18} \leftarrow C_{11}H_{18}$ $C_{11}H_{20} \leftarrow C_{11}H_{20} \leftarrow C_{11}H_{18}$ $C_{11}H_{20} \leftarrow C_{11}H_{20} \leftarrow C_{11}H_{20}$ What are A to K for the following reactions (i) PhC = CH + CH₃MgX $$\rightarrow$$ A $\xrightarrow{ArCH_2Cl}$ B $\xrightarrow{Li/NH_3}$ C $$CF_3 - CH = CH_2 \xrightarrow{HBr} J$$ (vi) $NBS \rightarrow K$ Me Me Ю́Н Мe Page 22 of 40 HYDROCARBONS $$(ii) \bigcirc + \bigcirc \bigcirc \longrightarrow$$ (iii) $$\longrightarrow$$ + $\stackrel{H}{\underset{Ph}{\bigvee}}^{NO_2}$ $\stackrel{\Delta}{\longrightarrow}$ $$(iv) \bigcirc + \bigcirc \bigcirc \bigcirc \longrightarrow \bigcirc$$ $$(v) \bigcirc \longrightarrow A \xrightarrow{1. \text{ NaNH}_2(3 \text{ equiv.}) \text{ NH}_3} B$$ - (i) Compare the reaction of $CH_2 = CH_2 & CF_2 = CF_2$ with NaOEt in EtOH - (ii) $CCl_2 = CCl_2$ does not decolourise Br_2 solution explain. - Q.15 Account for the collowing facts - Ozonolysis if carried out in MeOH solvent a hydroxy peroxy ether is formed as unexpected product. - When 2, 3 dimethyl 2 butene is treated with O₃ in presence of HCHO in CH₂Cl₂ medium, an ozonide other than that expected of the starting alkene is formed. Identify the unexpected ozonide. - Explain the following: - 1, 2 shift does not take place during oxymericuration demercuration. Why? - Halogneation of alkene is anti addition but not syn addition. Why? - Anti markovnikov addition is not applicable for HCl. Why? - 1,4–addition takes place in butadi-ene. Why? - FREE Download Study Package from website: www.tekoclasses.com \overrightarrow{C} \overrightarrow C-H bond is stronger than C-C bond but in chlorination C-H bonds get cleaved but not C-C bond. Why? - Q.17 Conversion: - (i) $C_2H_2 \longrightarrow \text{racemic } 2, 3 \text{ dibromobutane}$ - (ii) 2 butyne \longrightarrow 2 pentyne - (iii) Ethyne \longrightarrow Acetone - (iv) Methane \longrightarrow n Butane - (v) Ethene → Propionic Acid - Q.18 Conversion: - (i) $C_2H_2 \longrightarrow$ ethylidene diacetate (iii) $C_2H_2 \longrightarrow$ m nitroaniline - (ii) $C_2H_2 \longrightarrow Butyne diol$ (iv) cis but 2 ene $\longrightarrow Trans but 2 ene$ - Q.19 Outline a stereospecific synthesis of meso 3, 4 dibromohexane from ethyne. - Q.20 How can you convert - (a) Ethane in to meso 2, 3 dimethyl oxiran - (b) CaC₂ into 1, 3, 5 hexatriene - (c) Trimethylsecbutyl amonium hydroxide into 1,4-butan-dial - (d) Cyclo hexanol into trans cyclo hexane-1, 2-diol - How will you conver Q.21 - Hexane dial in to 1,3,5 hexatriene (a) - (b) 1-methyl propyl ethanoate into 1,4-dichloro-2-butene Page 23 of 40 HYDROCARBONS Page 24 of 40 HYDROCARBONS When citral is allowed to react in presence of dilute acid with olivetol, there is obtained a mixture of products, one of which is drug marijuana. Reaction is as follows. $$Me_{2}C = CH - CH_{2} - CMe = CH - CHO + OH C_{5}H_{11}$$ $$C_{5}H_{11}$$ $$(marijuana)$$ Explain the mechanism. TEKO CLASSES, Director: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 0 98930 58881, BHOPAL The following cyclisation has been observed in the oxymercuration & demercuration of this unsaturated Q.24 alcohol. Propose a mechanism for this reaction. $$\begin{array}{c|c} OH & \underline{\begin{array}{c} 1. & \text{Hg(OAC)}_2\\ \hline 2. & \text{NaBH}_4 \end{array}}$$ Write the structural formula of limonene from the following observation: Limonene when treated with excess H₂ & Pt catalyst, the product formed is 1 isopropyl · 4 methyl cyclohexane When it is treated with O₂ & then Zn/H₂O the products of the reaction are HCHO & following compound $MeCH_2$ -C \equiv CBr + CH \equiv CMe $\xrightarrow{Cu^+}$ A Q.26 (a) (b) $$CI$$ $CH_2 - CHCI_2 \xrightarrow{OH} B$ (c) $$CH_2 = CH - CH = CH - CH_3 \xrightarrow{\text{MeOH}} C$$ (d) $$C = CH \xrightarrow{Hg^{2+}} D$$ Cl_3C -CH= $CH_2 \xrightarrow{HOBr} E$ (e) $$(f) \qquad \stackrel{OH}{\longrightarrow} F \xrightarrow{O_3 ZnH_2O} G$$ (a) - Acetylene is acidic but it does not react with NaOH or KOH. Why? - $\mathsf{CH} = \mathsf{C} \mathsf{CH}_2 \mathsf{CH} = \mathsf{CH}_2, \text{ adds up HBr to give CH} = \mathsf{C} \mathsf{CH}_2 \mathsf{CHBr} \mathsf{CH}_3 \text{ while CH} = \mathsf{C} \mathsf{CH} = \mathsf{CH}_2 \text{ adds up HBr to give CH} = \mathsf{C} \mathsf{CH}_2 \mathsf{CHBr} \mathsf{CH}_3 \text{ while CH} = \mathsf{C} \mathsf{CH} + \mathsf{CH}_2 + \mathsf{CH}_3 \mathsf{CH}_$ Q.28 up HBr to give CH₂=C. Br. CH=CH₂. - Chlorination of ethane to ethyl chloride is more practicable than the chlorination of n-pentane to Q.29 1-chloropentane. - Why n-pentane has higher boiling point than neopentane? 0.30 #### EXERCISE-III - Q.1 0.37 gm of ROH was added to CH₂MgI and the gas evolved measured 112 cc at STP. What is the molecular wt. of ROH? On dehydration ROH gives an alkene which on ozonolysis gives acetone as one of the products. ROH on oxidation easily gives an acid containing the same number of carbon atoms. Gives the structures of ROH and the acid with proper reasoning. - An alkane $A(C_5H_{12})$ on chlorination at 300^0 gives a mixture four different mono chlorinated derivatives FREE Download Study Package from website: www.tekoclasses.com Q.2 B, C, D and E. Two of these derivatives give the same stable alkene F on dehydrohalogenation, On oxidation with hot alkaline KMnO₄ followed by acidification of F gives two products G and H. Give structures of A to H with proper reasoning. - Q.3 There are six different alkene A, B, C, D, E and F. Each on addition of one mole of hydrogen gives G which has the lowest molecular wt hydrocarbon containing only one asymmetric carbon atom. None of the above alkene give acetone as a product on ozonolysis. Give the structures of A to F. Identify the alkenes that is likely to give a ketone containing more than five carbon atoms on treatment with a warm conc. solution of alkaline KMnO₄. - 3, 3-dimethyl-1-butene and HI react to give two products, C₆H₁₃I. On reaction with alc. KOH one isomer, (I) gives back 3,3-dimethyl-1-butene the other (J) gives an alkene that is reductively ozonized to $Me_{2}C=0$. Give the structures of (I) and (J) and explain the formation of the later. - Three isomeric alkenes A, B and C, C₅H₁₀ are hydrogenated to yield 2-methylbutane A and B gave the same 3⁰ ROH on oxymercuration – demercuration. B and C give different 1⁰ ROH's on hydroboration -oxidation. Supply the structures of A, B & C. - Two isomeric alkyl bromides A and B ($C_5H_{11}Br$) yield the following results in the laboratory. A on treatment with alcoholic KOH gives C and D (C₅H₁₀). C on ozonolysis gives formaldehyde and 2 methyl propanal. B on treatment with alcoholic KOH gives only $C(C_5H_{10})$. Deduce the structures of A, B, C and D. Ignore the possibility of geometrical and optical isomerism. - Give the structure of A, B and C. - A (C_4H_8) which adds on HBr in the presence and in the absence of peroxide to give the same product - (b) B (C_4H_8) which when treated with H_2SO_4/H_2O give $(C_4H_{10}O)$ which cannot be resoslved into optical - $C(C_6H_{12})$, an optically active hydrocarbon on catalytic hydrogenation gives an optically inactive (c) compound C₆H₁₄. - **Q.8** An alkylhalide, X, of formula $C_6H_{13}Cl$ on treatment with potassium tertiary butoxide gives two isomeric alkenes Y and $Z(C_6H_{12})$. Both alkenes on hydrogenation gives 2, 3-dimethylbutane predict the structures of X, Y and Z. - Identify a chiral compound C, C₁₀H₁₄, that is oxidized with hot KMnO₄ to Ph COOH, and an achiral Q.9 compound D, $C_{10}H_{14}$, inert to oxidation under the same conditions. - Q.11 Three compounds A, B and C are isomers of the formula C_5H_8 . All of them decolorises bromine in CCl_4 and gives a positive test with Baeyer's reagent. All the three compounds dissoslve in conc. H₂SO₄. Compound A gives a white ppt. with ammonical silver nitrate whereas B and C do not. On hydrogenation in presence of Pt catalyst, A and B both yield n-pentane whereas C gives a product of formula C_5H_{10} . On oxidation with hot alkaline KMnO₄ (B) gives acetic acid and CH₃CH₂COOH. Identify A, B & C. - An unsaturated hydrocarbon (A) C₆H₁₀ readily gives (B) on treatment with NaNH₂ in liquid NH₃. When (B) is allowed to react
with 1-chloropropane a compound (C) is obtained. On partial hydrogenation in the presence of lindlar's catalyst, (C) gives (D), C₀H₁₈. On ozonolysis, (D) gives 2, 2-dimethylpropanal and 1-butanal with proper reasoning give the structures of (A) (B), (C) and (D). - A hydrocarbon A, of the formula C_8H_{10} , on ozonolysis gives compound B $(C_4H_6O_2)$ only. The compound B can also be obtained from the alkylbromide (C_3H_5Br) upon treatment with magnesium in dry ether, followed by carbondioxide and acidification. Identify A, B and C and also give equations for the reactions. - An organic compound (A), C_6H_{10} on reduction first gives (B), C_6H_{12} and finally (C), C_6H_{14} . (A) on ozonolysis followed by hydrolysis gives two aldehydes (D), C₂H₄O and (E) C₂H₂O₂. Oxidation of (B) with acidified KMnO₄ gives the acid (F), $C_4H_8O_2$. Determine the structures of the compounds (A) to (F) with proper reasoning. - FREE Download Study Package from website: www.tekoclasses.com Compound $A(C_6H_{12})$ is treated with Br_2 to form compound $B(C_6H_{12}Br_2)$. On treating B with alcoholic KOH followed by NaNH, the compound C (C_6H_{10}) is formed. C on treatment with H_2/Pt forms 2-methylpentane. The compound 'C' does not react with ammonical Cu₂Cl₂ or AgNO₃. When A is treated with cold KMnO₄ solution, a diol D is formed which gives two acids E and F when heated with KMnO₄ solution. Compound E is found to be ethanoic acid. Deduce the structures from A to F. - An optically active hydrocarbon (A), C₈H₁₂ gives an optically inactive compound (B) after hydrogenation. (A) gives no ppt. with $Ag(NH_3)_2^+$ and gives optically inactive (C), C_8H_{14} with H_2 in presence of Pd/BaSO₄. Determine the structures, give suitable names for A, B, C & give your reasoning. - A organic compound A having carbon and hydrogen, adds one mole of H₂ in presence of Pt catalyst to form normal hexane. On vigorous oxidation with KMnO₄, it gives a simple carboxylic acid containing 3 carbon atoms. Assign the structure to A. - An organic compound A, C_6H_{10} , on catalytic reduction first gives B, C_6H_{12} , and finally C, C_6H_{14} . A on ozonolysis followed by hydrolysis gives two aldehydes D, C_2H_4O and E, $C_2H_2O_2$. Oxidation of B with acidified KMnO₄ gives acid F. - A hydrocarbon has 88.89% carbon and 11.11% hydrogen. 0.405 g sample of the hydrocarbon occupies 229.54 ml at 100°C and 1 atm pressure. It decolourises potassium permanganate solution and bromine water without evolving hydrobromic acid. It gave no precipitate with either ammoniacal silver nitrate or cuprous chloride solution. When it reacts with dilute H₂SO₄ in presence of mercuric sulphate, under appropriate conditions, methyl ethyl ketone is formed. What is the hydrocarbon. Write the structural formulae of the eight possible isomer of this compound. - 6g sample of a natural gas consisting of methane (CH_4) and ethylene (C_2H_4) was burned with excess of Q.20oxygen and 17.2g of carbon dioxide and some water was obtained as products. What percent by weight of the sample was ethylene. FREE Download Study Package from website: www.tekoclasses.com Hydrogenation of the above compound in the presence of poisoned paladium catalyst gives – - (A) An optically active compound - (B) An optically inactive compound (C) Aracemic mixture - (D) A diastereomeric mixture - The reaction of propene with HOCl proceeds via the addition of Q.13 [IIT '2001] [IIT '2001] (A) H⁺ in first step (B) Cl+ in first step (C) OH- in first step - (D) Cl⁺ and OH⁻ in single step - The nodal plane in the π -bond of ethene is located in – [HT '2002] - (A) the molecular plane - (B) a plane parallel to the molecular plane - (C) a plane perpendicular to the molecular plane which contains the carbon–carbon σ –bond at right angle - (D) a plane perpendicular to the molecular plane which contains the carbon–carbon σ –bond - Consider the following reactions Q.15 [IIT '2002] $$H_3C-CH-CH-CH_3 + Br \rightarrow 'X' + HBr$$ $$D CH_3$$ Identify the structure of the major product 'X' (A) $$H_3C - CH - CH - CH_2$$ $D - CH_3$ FREE Download Study Package from website: www.tekoclasses.com Identify a reagent from the following list which can easily distinguish between 1-butyne and 2-butyne- [IIT '2002] (A) bromine, CCl₄ (B) H₂, Lindlar catalyst (C) dilute H₂SO₄, HgSO₄ (D) ammonical Cu₂Cl₂ solution Q.17 $$C_6H_5$$ -C=C-CH₃ $\xrightarrow{\text{HgSO}_4}$ A [IIT '2003] $$(A) \checkmark \bigcirc$$ $$(B) \bigvee_{\square} \bigcirc$$ (A) $$(B)$$ (C) FREE Download Study Package from website: www.tekoclasses.com Page 29 of 40 HYDROCARBONS TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 0 98930 58881,BHOPAI Q.2 PH: (0755)- 32 00 000, - Cl $(CH_3)_2C - CH_2CH_3 \xrightarrow{\text{alc.KOH}} ?$ Q.1 - [IIT 1993] - $C(C_6H_{12})$, an optically active hydrocarbon which on catalytic hydrogenation gives an optically inactive Q.3 [IIT 1993] compound, C_6H_{14} . - Q.4 Draw the stereochemical structure of the product in the following reactions. $$R-C\equiv C-R \xrightarrow{H_2}$$ Lindlar catalyst Q.5 Write down the structures of the stereoisomers formed when cis-2-butene is reacted with bromine. [IIT 1995] [IIT 1994] - An organic compound $E(C_5H_8)$ on hydrogenation gives compound $F(C_5H_{12})$. Compound E on ozonolysis gives formaldehyde and 2-ketopropanal. Deduce the structure of compound E. [IIT 1995] - Give the structures of the major organic products from 3-ethyl-2-pentene under each of the following **Q.7** [IIT 1996] reaction conditions. - HBr in the presence of peroxide (a) - (b) Br_2/H_2O - Hg(OAc)₂/H₂O; NaBH₄ (c) - Q.8 An alkyl halide, (X) of formula $C_6H_{13}Cl$ on treatment with potassium tertiary but oxide gives two isomeric alkenes (Y) and (Z) (C_6H_{12}) . Both alkenes on hydrogenation give 2, 3-dimethylbutane. Predict the structures of (X), (Y) and (Z)[IIT 1996] - 3,3-Dimethyl-butan-2-ol loses a molecule of water in the presence of concentrated sulphuric acid to 🛨 give tetramethylethylene as a major product. Suggest a suitable mechanism. [IIT 1996] - One mole of the compound A (molecular formula C_8H_{12}), incapable of showing stereoisomerism, reacts with only one mole of H₂ on hydrogenation over Pd. A undergoes ozonolysis to give a symmetrical diketone B ($C_8H_{12}O_2$). What are the structure of A and B? [IIT 1997] - Compound (A) C₆H₁₂ gives a positive test with bromine in carbon tetrachloride. Reaction of (A) with alkaline KMnO₄ yields only (B) which is the potassium salt of an acid. Write structure formulae and IUPAC name of (A) and (B). [IIT 1997] - The central carbon–carbon bond in 1,3–butadiene is shorter than that of n–butane. Why? Q.12 [IIT 1998] [IIT 1998] TEKO CLASSES, Director : SUHAG - Write the intermediate steps for each of the following reaction 0.13 $C_6H_5CH(OH)C\equiv CH \rightarrow C_6H_5CH\equiv CHCHO$ - Write the intermediate steps for each of the following reaction. [IIT 1998] $$0H \xrightarrow{H^+} 0 \xrightarrow{CH_3}$$ Q.17 Complete the following – [IIT 1999] Page 31 of 40 HYDROCARBONS Explain briefly the formation on the products giving the structures of the intermediates. [IIT 1999] FREE Download Study Package from website: www.tekoclasses.com $$(i) \xrightarrow[H_2]{H_2C} \xrightarrow[H_2]{C} \xrightarrow[H_2]{C} \xrightarrow[H_2]{C} \xrightarrow[C]{H_2} \xrightarrow[CH_2]{C} \xrightarrow[CH_2]{C} + CH_2 - CI + etc.$$ But Q.19 (ii) $$H_2C$$ C CH H_2C Explain the non formation of cyclic product in (ii) [IIT 1999] Director: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 0 98930 58881, BHOPAL TEKO CLASSES $$\label{eq:ch3-ch2-ch2-ch3} \text{CH}_3\text{-CH}_2\text{-C=C-H} \to \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-C-CH}_3$$ Carry out the following transformation in not more than three steps CH₂=CH⁻ is more basic than HC≡C⁻ Q.20 [IIT 2000] Q.21 What would be the major product in each of the following reactions? [IIT 2000] $$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} - \text{C} - \text{CH}_{2} \text{Br} \xrightarrow{C_{2} \text{H}_{5} \text{OH}} \\ \text{I} \\ \text{CH}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{2} \text{H}_{5} \text{OH} \\ \text{C} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{2} \text{H}_{5} \text{OH} \\ \text{C} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{2} \text{H}_{5} \text{OH} \\ \text{C} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{2} \text{H}_{5} \text{OH} \\ \text{C} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{2} \text{H}_{5} \text{OH} \\ \text{C} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{2} \text{H}_{5} \text{OH} \\ \text{C} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{2} \text{H}_{5} \text{OH} \\ \text{C} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{2} \text{H}_{5} \text{OH} \\ \text{C} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{3} \text{H}_{2} \\ \text{C} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{3} \text{H}_{2} \\ \text{C}_{3} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{3} \text{H}_{2} \\ \text{C}_{3} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{3} \text{H}_{2} \\ \text{C}_{3} \text{H}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C}_{3} \text{H}_{3} \text$$ On reaction with 4N alcoholic KOH at 175 °C 1–pentyne is slowly converted into equilibrium mixture Q.22 of 1.3% 1-pentyne (A), 95.2% 2-pentyne (B) and 3.5% 1,2-pentadiene (C). Give the suitable mechanism of formation of A, B and C with all intermediates. [IIT 2001] Identify X, Y and Z in the following synthetic scheme and write their structures. Is the compound Z Q.23 optically active? Justify your answer. [IIT 2002] $$CH_{3}CH_{2}C \equiv C-H \xrightarrow{(i) NaNH_{2}} X \xrightarrow{H_{2}/Pd-BaSO_{4}} Y
\xrightarrow{alkaline \ KMnO_{4}} Z$$ - (a) - A biologically active compound, Bombykol (C₁₆H₃₀O) is obtained from a natural source. The structure of the compound is determined by the following reactions. On hydrogenation, Bombykol gives a compound A, C₁₆H₃₄O, which reacts with acetic anhydride to give an ester. Bombykol also reacts with acetic anhydride to give another ester, which on oxidative ozonolysis (O₃/H₂O₂) gives a mixture of butanoic acid, oxalic acid and 10-acetoxy decanoic acid. Determine the number of double bonds in Bombykol. Write the structures of compound A and Bombykol. How many geometrical isomers are possible for Bombykol? [IIT 2002] (b) - Q.25 CH₃ #### **ANSWER KEY** EXERCISE-I (A) | \ge | | | | | | | | | 1_ | | 1/ | | | | |--------|------|---|------|---|------|---|------|---|------|---|------|---|------|---| | w.tek | Q.57 | C | Q.58 | A | Q.59 | D | Q.60 | A | Q.61 | A | Q.62 | С | | | | oclasi | Q.50 | C | Q.51 | C | Q.52 | C | Q.53 | A | Q.54 | C | Q.55 | C | Q.56 | C | | ses.co | Q.43 | В | Q.44 | В | Q.45 | C | Q.46 | В | Q.47 | A | Q.48 | A | Q.49 | A | | Œ | Q.36 | A | Q.37 | A | Q.38 | D | Q.39 | В | Q.40 | В | Q.41 | A | Q.42 | В | | | Q.29 | | _ | C | _ | | _ | | _ | | _ | | _ | | | | Q.22 | D | Q.23 | A | Q.24 | A | Q.25 | В | Q.26 | A | Q.27 | C | Q.28 | В | | | Q.15 | В | Q.16 | D | Q.17 | В | Q.18 | D | Q.19 | A | Q.20 | В | Q.21 | C | | | Q.8 | C | Q.9 | A | Q.10 | C | Q.11 | D | Q.12 | A | Q.13 | В | Q.14 | A | | | Q.1 | D | Q.2 | В | Q.3 | A | Q.4 | В | Q.5 | A | Q.6 | D | Q.7 | C | #### EXERCISE-I (B) (A) P; (B) R; (C) S; (D) Q #### EXERCISE-II Q.1 (a) $$(A) = \bigcirc$$ H BH₂ $(B) = \bigcirc$ H HO (b) \bigcirc H DO H H COO^{\theta} H H H COO^{\theta} H H COO^{\theta} H COO^{\theta} H COO^{\theta} H COO^{\theta} H $$\begin{array}{ccc} & \text{CH}_3 \\ \text{Q.2} & \text{CH}_3 - \text{C} = \text{CH}_2 \end{array}$$ Q.3 $$CH_2-CH_2-CH_1 + O = CH_1$$ $CH=O + O = CH_1$ Q.4 A + B are two enatiomers $$\begin{array}{c|cccc} C_2H_5 & C_2H_5 \\ H & OH & OH & H \\ OH & C_2H_5 & C_2H_5 \end{array}$$ Q.6 $$\begin{array}{c|c} & CH_2NO_2 \\ H & CHO \\ \hline CH_2NO_2 \end{array}$$ $$CH_{2} = CH - CH_{2} - CH_{2} - CH_{2} - N - CH_{3}$$ CH_{3} Q.10 $$(D) = \bigvee_{O}, (E) = \bigvee_{Me} OH, (F) = \bigvee_{Me} OH$$ ONa (E) $$C-C-C-C-C-C-C-C-C$$, (F) $C-C-C-C-C-C-C-C$, OH Q.11 (A) C-C = C-C - C = C-C, (B) $cis\ C-C = C-C-C = C-C$, (C) C-C = Q.12 (A) PhC=CMgx, (B) Ph-C=C-CH₂Ar, (C) $\stackrel{\text{Ph}}{\underset{\text{CH}_2-\text{Ar}}{\longleftarrow}}$ $\stackrel{\text{H}}{\underset{\text{CH}_2-\text{Ar}}{\longleftarrow}}$ $\stackrel{\text{Ph}-\text{CH}}{\underset{\text{Br}}{\longleftarrow}}$ Ph-CH-Et (E) Ph–CH=CH–Me trans, (F) Ph – CH – CH – Me (threo mix.), (G) Ph–COOH ОН ОН (H) cold dil. KMnO₄, (I) HCO₃H, (J) CF₃CH₂CH₂Br, (K) \langle (v) (A) $$\frac{Br}{Ph - CH - CH_2 - Br}$$, (B) $Ph - C = C - CH_3$ (i) II is faster, (ii) unstable intermediate Q.1 $$\stackrel{\text{H}_3\text{C}}{\sim}$$ CH-CH₂OH $$Q.2$$ (A) $$^{\text{CH}_3}_{\text{-}}$$ $$^{\text{CH}_3}$$ $$^{\text{CH}_2}$$ CH_2CH_3 (B) $$\begin{array}{c} \text{CH}_3 \\ \mid \\ \text{H}_3\text{C--CH--CH}_2\text{CH}_2\text{CI} \end{array}$$ (E) $$CH_3$$ I $CICH_2-CH-CH_2CH_3$ CH₃COCH₃ (H) CH₃COOH (G) (B) (B) CH₃-C=CH-CH₃ $$\begin{array}{c} \operatorname{CH_2=CCH_2CH_3} \\ \operatorname{CH_3} \end{array} \qquad \qquad (\operatorname{C})\operatorname{CH_2=CHCH(CH_3)_2} \\ \operatorname{CH_3} \end{array}$$ (C) $$\begin{array}{cccc} Q.6 & Br & \\ & | & CH_3 \\ (A) & CH_3-CH-CH & \\ & & CH_3 \end{array}$$ $$\begin{array}{c} \mathrm{CH_2Br}\text{-}\mathrm{CH_2}\text{-}\mathrm{CH}\text{-}\mathrm{CH_3} \\ | \\ \mathrm{CH_3} \end{array}$$ $$\begin{array}{c} \text{CH}_2\text{=CH-CH-CH}_3 \\ \mid \\ \text{CH}_3 \end{array}$$ Q.7 (A) $$CH_3$$ -CH=CH-CH $_3$ $$C = C$$ (C) Q.8 (X) $$CH_3$$ -CCl-CH- CH_3 (Y) CH_3 CH_3 $$\begin{array}{ccc} \mathrm{CH_2=C} & --\mathrm{CH-CH_3} \\ & | & | \\ & \mathrm{CH_3} & \mathrm{CH_3} \end{array}$$ FREE Download Study Package from website: www.tekoclasses.com Q.9 (A) $PhCH(CH_3)CH_2CH_3$ (B) $PhC(CH_3)_3$ Q.10 OH $(A) \ CH_{3}-CH_{2}-C-CH_{2}-CH_{2}CH_{3} \ (B) \ CH_{3}CH_{2}-C-CH_{2}CH_{3}CH_{3} \ (C) \ CH_{3}CH_{2}-C-CH_{5}CH_{3}$ CH, CH₂ 0 (D) CH₃ CH₂ CH₃ (E) (F) CH₃-CH-C-CH₂CH₃ CH₃CH-CH-CH₂CH₃ CH₃-CH-CH-CH₂-CH₃ | |CH₂OH CO₂H CH, (G) CH₃-CH - C-CH₂-CH₃ (G) CH_3 –CH– C– CH_2 – CH_3 CH_3 O Q.11 (A) $CH_3CH_2CH_2-C\equiv CH_3$ (B) $CH_3CH_2C\equiv C-CH_3$ (C) Cyclopentene $Q.13 \quad \text{(A)} \quad \bigcirc C \equiv C \quad \bigcirc \quad \text{(B)} \quad \bigcirc COOH \quad \quad \text{(C)} \quad \bigcirc -Br$ Q.14 (A) CH₃-CH=CH-CH=CH-CH₃ (B) CH₃CH₂CH₂CH=CHCH₃ (C) CH₃CH₂CH₂CH₂CH₂CH₃ (D) CH₃CHO (F) CH₃CH₂CH₂COOH CHO (D) CH₃-CH-CH-CH₃ (E) CH₃COOH (F) H₃C-CH-COOH OH OH CH₃ CH₃ Q.17 $CH_3CH_2CH = CHCH_2CH_3$ $Q.18 \quad (A) \ CH_{3}-CH=CH-CH=CH-CH_{3}, \ \ (B) \ CH_{3}-CH_{2}-CH=CH-CH_{2}-CH_{3},$ (C) CH_3 – CH_2 – CH_2 – CH_2 – CH_3 , (D) CH_3 CHO, (E) | , (F) CH_3 CHO CHO ``` Q.19 Isomer are: C=C-C-C, C=C-C=C, C=C=C-C ``` 23.7 Q.20 #### EXERCISE-IV (A) Q.23 Α ### EXERCISE-IV (B) - (A) CH₃-CH₂-CH=CH-CH₂-CH₃ (B) CH₃CH₂COOK Q.11 - $1 \rightarrow \text{ozonolysis} ; 2 \rightarrow \text{LiAlH}_4 ; 3 \rightarrow \text{H}_2\text{SO}_4$ Q.16 - $(4) \rightarrow \text{HO-Cl }; (5) \rightarrow \text{CH}_3\text{MgCl }; (6) \rightarrow \text{H}_2\text{O}/\text{H}^+$ Q.17 - Q.19 $(1) \text{ NaNH}_2, (2) \text{ Me-I}, (3) \text{ HgSO}_4 \text{ dil } \text{H}_2 \text{SO}_4$ - Q.20 higher electronegativity of sp carbon Q.23 (X) $$\rightarrow$$ Et-C=C-Et (Y) \rightarrow Et \rightarrow C=C \leftarrow H (Z) \rightarrow H OH Z is meso so optically inactive. 4 geometrical isomers are possible (A):- $HO(CH_3)_{15}CH_3$ $$CH_3$$ CH_3 CH_3 $C=C$ CH_2 CH_2 Q.26 (X) $$\bigcirc$$, (Y) $CH_3 - C - (CH_2)_4 - CH = O$